Weightless: Lossy Weight Encoding For Deep Neural Network Compression

نویسندگان

  • Brandon Reagen
  • Udit Gupta
  • Robert Adolf
  • Michael Mitzenmacher
  • Alexander M. Rush
  • Gu-Yeon Wei
  • David M. Brooks
چکیده

The large memory requirements of deep neural networks limit their deployment and adoption on many devices. Model compression methods effectively reduce the memory requirements of these models, usually through applying transformations such as weight pruning or quantization. In this paper, we present a novel scheme for lossy weight encoding which complements conventional compression techniques. The encoding is based on the Bloomier filter, a probabilistic data structure that can save space at the cost of introducing random errors. Leveraging the ability of neural networks to tolerate these imperfections and by re-training around the errors, the proposed technique, Weightless, can compress DNN weights by up to 496× with the same model accuracy. This results in up to a 1.51× improvement over the state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weightless: Lossy Weight Encoding for Deep Neural Network Compression

The large memory requirements of deep neural networks limit their deployment and adoption on many devices. Model compression methods effectively reduce the memory requirements of these models, usually through applying transformations such as weight pruning or quantization. In this paper, we present a novel scheme for lossy weight encoding which complements conventional compression techniques. T...

متن کامل

Universal Deep Neural Network Compression

Compression of deep neural networks (DNNs) for memoryand computation-efficient compact feature representations becomes a critical problem particularly for deployment of DNNs on resource-limited platforms. In this paper, we investigate lossy compression of DNNs by weight quantization and lossless source coding for memory-efficient inference. Whereas the previous work addressed non-universal scal...

متن کامل

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result. First, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to several...

متن کامل

Edge-Host Partitioning of Deep Neural Networks with Feature Space Encoding for Resource-Constrained Internet-of-Things Platforms

This paper introduces partitioning an inference task of a deep neural network between an edge and a host platform in the IoT environment. We present a DNN as an encoding pipeline, and propose to transmit the output feature space of an intermediate layer to the host. The lossless or lossy encoding of the feature space is proposed to enhance the maximum input rate supported by the edge platform a...

متن کامل

Deep feature compression for collaborative object detection

Recent studies have shown that the efficiency of deep neural networks in mobile applications can be significantly improved by distributing the computational workload between the mobile device and the cloud. This paradigm, termed collaborative intelligence, involves communicating feature data between the mobile and the cloud. The efficiency of such approach can be further improved by lossy compr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04686  شماره 

صفحات  -

تاریخ انتشار 2017